

excellence and passion in automatic control design

Activity scheduling in $EICASLAB^{TM}$

Welcome to Innovation

Via Vincenzo Vela, 27 10128 Torino - ITALY (IT) Tel. +39 011 56 23 798 +39 011 56 23 088 Fax +39 011 43 60 679

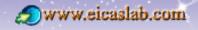

excellence and passion in automatic control design

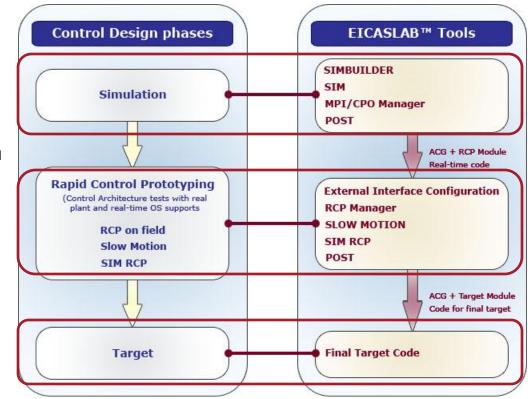
TABLE OF CONTENT

- Activity scheduling as professional support to design control hardware & software architecture
- Scheduling in the Simulation phase

• Scheduling in the Rapid Control Prototyping phase

excellence and passion in automatic control design

$EICASLAB^{TM}$ assists you in all the control design phases

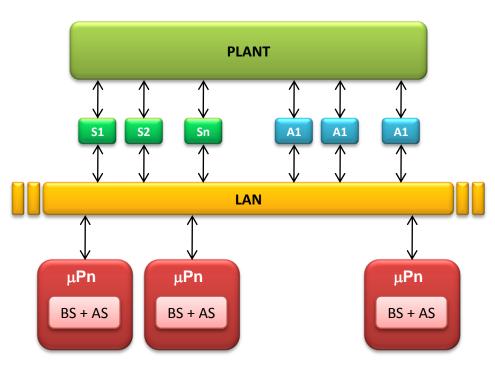

EICASLAB is the professional software suite that supports you in all the control design phases: from the system concept to the code generation for the final target.

Specifically, EICASLAB provides a professional support and specific tools devoted to the following control design phases:

Simulation

Rapid Control Prototyping (RCP)

 Code generation for the final target



excellence and passion in automatic control design

EICASLAB[™] takes particular care of the control software & hardware architecture

EICASLAB allows you to develop hardware architectures including multiprocessors and software architectures including multi-level hierarchical control function.

A support is given for allocating each control activity to a given processor.

The scheduling of all the activities involved in a control system is a key task for the successful development of the control system itself.

EICASLAB provides a fundamental and professional support for a correct scheduling of your system in all the control design phases.

excellence and passion in automatic control design

The Scheduling in the Simulation phase

In the Simulation phase three different working areas are available:

MISSION AREA

CONTROL

MISSION

Automatic

control

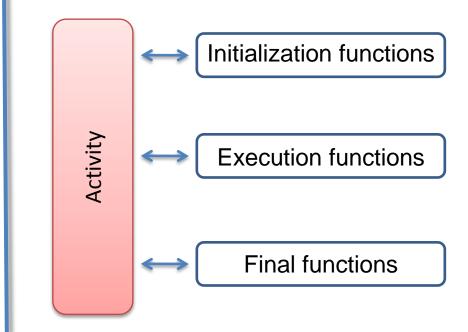
PLANT

MISSION

u(i)

disturbances

PLANT


PLANT AREA

y(i)

- the Control Area,
- the Plant Area,
- the Mission Area.

The designer must schedule all the activities of these 3 areas.

Each activity is composed by:

Asynchronous

commands from host

Trajectory

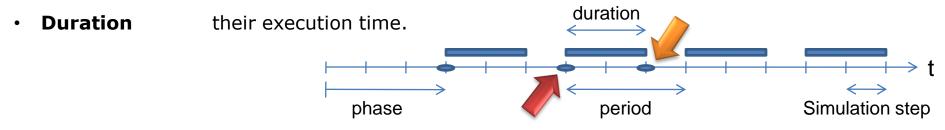
generation

r,(i)

CONTROL AREA

excellence and passion in automatic control design

The Scheduling in the Simulation phase

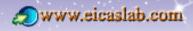

The activities scheduling

The designer must fix a simulation step,

which represents the time resolution applied in the simulation of your overall project.

The periodic functions are characterized by the following scheduling parameters (expressed as a multiple of the simulation step):

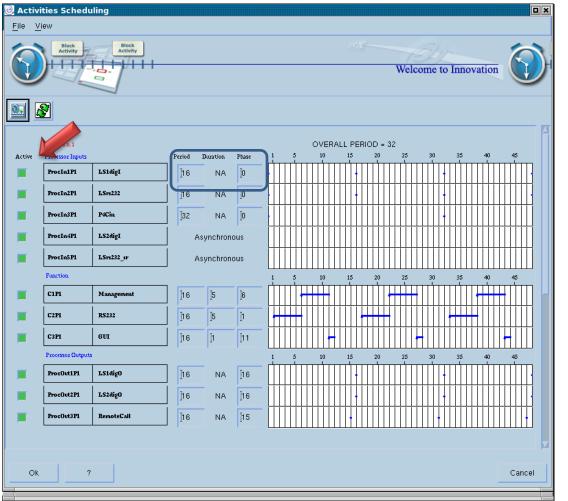
- Phase time at which they are called for the first time,
- **Period** their sample time interval,



To guarantee the correct scheduling of the activity it is necessary to take into account its duration

Two periodic functions are available:

execution function	It executes all the operations that the activity must perform each time it is scheduled	It is called when the activity is scheduled (considering its phase and its period)
output function	It computes and updates the outputs of the activity as a function of its current state	It is called after the fixed duration

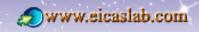


www.eicas.it

excellence and passion in automatic control design

The Scheduling in the Simulation phase

The Activities schedule window


All the activities are listed in the following order:

- Plant Area activities,
- the Converters activities,
- Mission Area activities,
- Control Area activities.

The 'Active' push enables or disables the corresponding activity.

The **Period**, **Duration** and **Phase** of each activity can be set.

EICASLAB supports you and prevents you to make scheduling errors.

excellence and passion in automatic control design

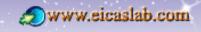
Block

The Scheduling in the Simulation phase

The EICASLAB scheduler of the SIM tool

The SIM tool manages the scheduling of activities by means of the **EICASLAB scheduler**, H an advanced engine that allows to run like real-time simulations

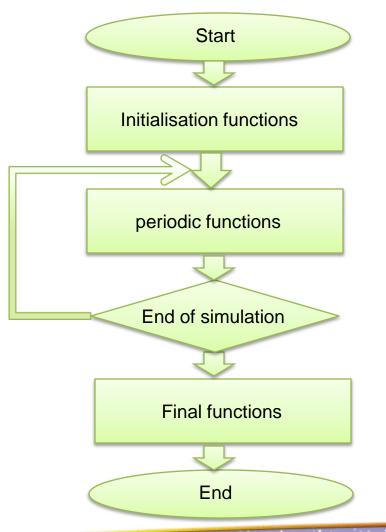
The EICASLAB scheduler is the core of the time scheduling algorithms.


On the basis of the constraints fixed in the 'Activities Scheduling' window.

It defines the order in which the functions of a given activity have to be executed

It schedules the data trasmission among all the activities

The EICASLAB scheduler is directly linked to the clock of the CPU: if the simulation is fast enough it may allow to run a real-time simulation.



excellence and passion in automatic control design

The Scheduling in the Simulation phase

The EICASLAB scheduler simulations

w.eicas.it

The EICASLAB scheduler performs a simulation with period equal to the simulation step.

Intialization functions

Project parameters reading

Project initial state reading

User initialisation functions

Periodic functions

Output functions (Updating of the outputs)

Signal Propagation

Plot update (SIM plotting and POST file recording)

Execution functions

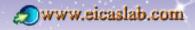
Time update

Final functions

User final functions

Project final state saving

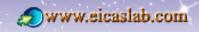
excellence and passion in automatic control design


The Scheduling in the Simulation phase

Initialisation functions

The schedulable activities have a set of 'initial functions' called just once at the beginning of the simulation.

Function description	Activities concerned	Order of scheduling
Parameter file reading	All activities that have parameters	
Resolution file reading	Only Continuous Plant	
Initial state file reading	All activities that have state variables	
Control design	Only the control functions	
User initialisation function	Only activities programmed in ANSI C language	


excellence and passion in automatic control design

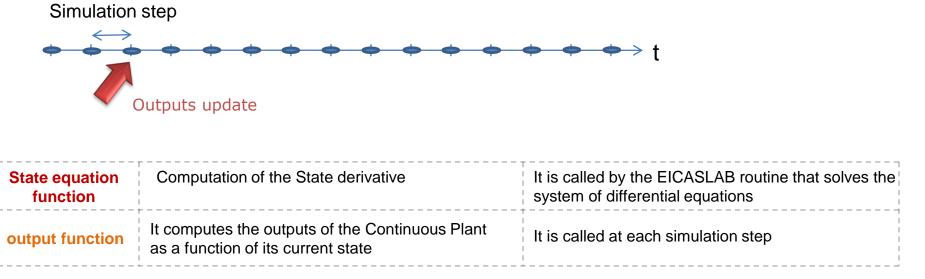
The Scheduling in the Simulation phase

Final functions

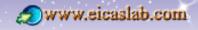
The schedulable activities have a set of 'final functions' called just once at the end of the simulation.

Function description	Activities concerned	Order of scheduling
User final function	Only activities programmed in ANSI C language	
Final state file writing	All activities that have state variables	

excellence and passion in automatic control design


The Scheduling in the Simulation phase

Continuous Plant scheduling


The Continuous Plant is the mathematical fine model of the plant to be controlled. It is a dynamic system - with state and outputs variables - that can be represented through a system of differential equations.

The integration of such a system is performed through a smart integration procedure embedded in EICASLAB.

The outputs of the Continuous Plant are updated at each simulation step.

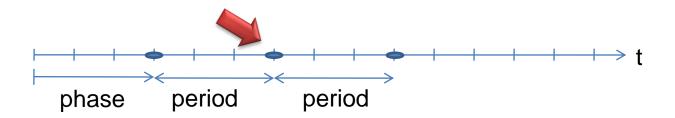
excellence and passion in automatic control design

The Scheduling in the Simulation phase

Instantaneous activities scheduling

The duration of some activities is null or negligible with respect to the duration of the other ones: they are called instantaneous.

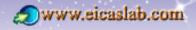
Their scheduling is then defined just by the **Phase** and **period**.


Instantaneous activities

Experimental Data

Elementary missions

A/D and D/A Converters

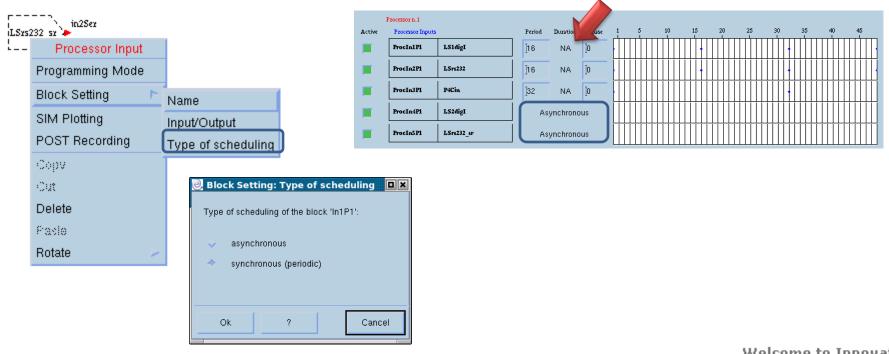

Processor Input/Output

Instantaneous activities periodic functions

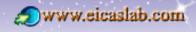
execution function	perform each time it is scheduled and	called when the block is scheduled (considering its phase and its period)
	updates its outputs	

excellence and passion in automatic control design

The Scheduling in the Simulation phase


Processor Inputs: Synchronous and asynchronous activities

The processor inputs represent the interrupt activities that receive and process the inputs coming in your processor.


Such inputs can be received:

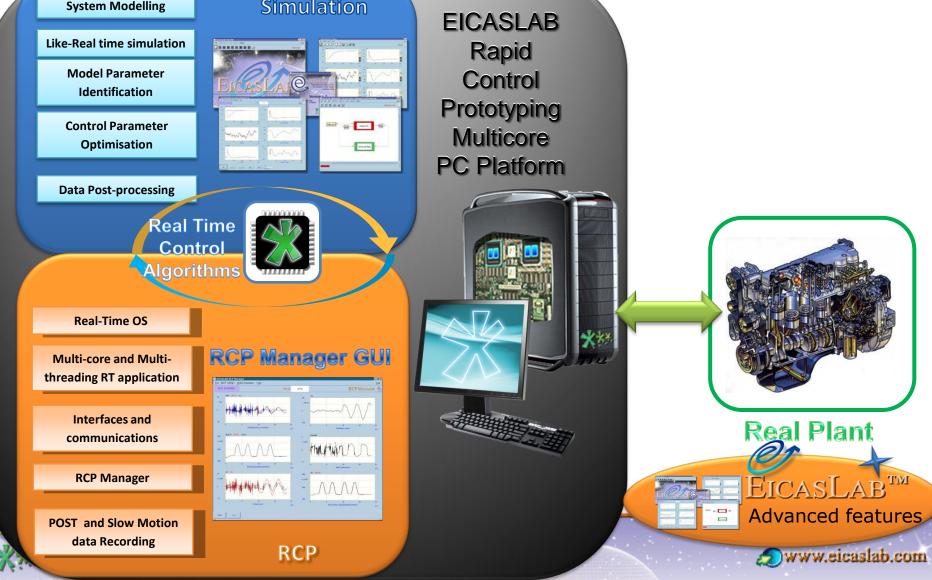
with a given periodicity (synchronous processor inputs),

through an asyncrounous communication (asynchronous processor inputs).

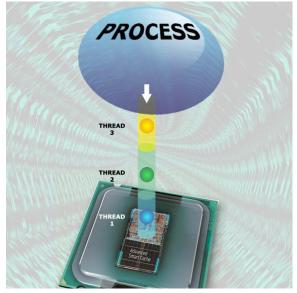
excellence and passion in automatic control design

The scheduling in the Rapid Control Prototyping phase

The Rapid Control Prototyping phase allows you to test and validate your control software by transferring it in a smart PC Platform equipped with a suitable RTOS and by directly piloting your plant, before the transfer in the final target.

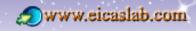

The Rapid Control Prototyping phase is fundamental for minimizing time and costs in the control tuning in field.

EXAMPLE Elected and passion in automatic control design Excellence and passion in automatic


excellence and passion in automatic control design

The scheduling in the Rapid Control Prototyping phase

Multi-core & multi-thread applications


A **multi-core processor** is a processing system composed by two or more independent cores. While in single core CPU systems, it is not possible to execute more than one piece of code at a same time, in a multi-core processor each core can run a portion of code so that a real concurrent execution is achieved.

A **thread** is a unit of executable code. In a thread-based multitasking environment all processes have at least one thread of execution, which is called the main thread. Each multithreaded process starts with the main thread that creates one or more additional child threads.

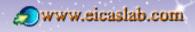
Multithreading changes the fundamental architecture of a program. Unlike a single-threaded program that executes in a strictly linear way, a multithreaded program executes portions of itself concurrently. Then a single program can perform two or more tasks concurrently. The true concurrent execution is possible only in a multiple-CPU or multi-core CPU systems.

excellence and passion in automatic control design

The scheduling in the Rapid Control Prototyping phase

Scheduling, cores & threads

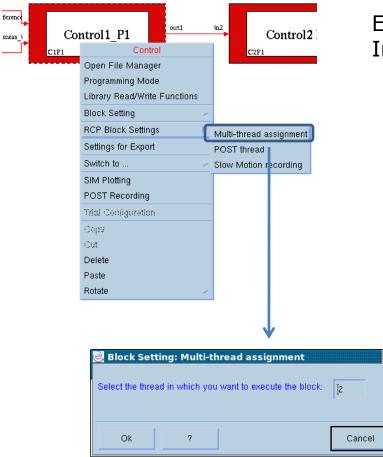
The Control system works directly with the real Plant, then just the Control Area must be scheduled.

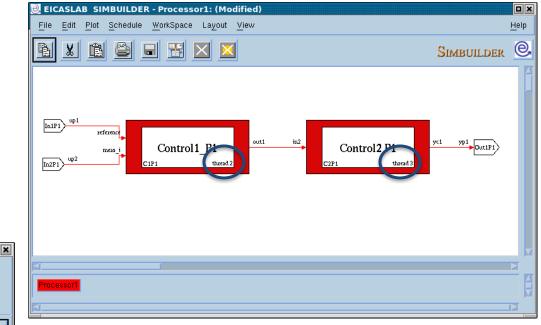

To guarantee the correct emulation of the Target control architecture, in the **Rapid Control Prototyping** phase, the user could have the need of reviewing the control scheduling.

The new scheduling requires to organize the control functions in **threads**, that will be distributed on the **cores** of the multi-core CPU available in the PC platform, thanks to the application in EICASLAB of multithreading and multi-core programming techniques.

Providence and	
	Complexes
Mass.	erol3 P1
MULTI-CORE & MULTI	
HOLIT-COKE & HOLIT	-THREADING

There is no more simulation step: instead of it the clock tick of the real-time operative system is considered.





excellence and passion in automatic control design The scheduling in the Rapid Control Prototyping phase

Thread of the activities

Every Control function and Processor Input/Output has to be associated to a thread.

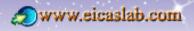
ww.eicas.it

EICAS Automazione S.p.A.

excellence and passion in automatic control design

The scheduling in the Rapid Control Prototyping phase

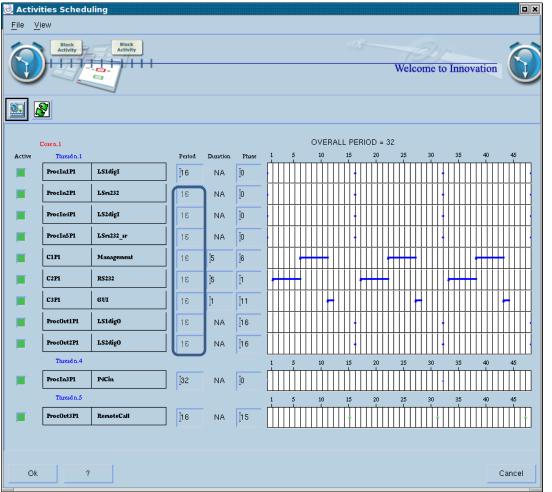
Core & thread setting


Calif. Diet. Calessinia	MDRCDO Levent Marrie			Links	
	MPI/CPO Layout View			Help	Core manage
ative Modes <u>C</u> onfigurat	tion <u>A</u> CG				2 core manage
an field anthings b			SIMP	UILDER 🔍 T	Thread and core ma
	ating system selection		1911vil		rificad and core in
	management	J		fi	🗇 default
	R: /home/webinar/MyProje	ct.elp - System Lay	yout		custom
Edit Plot Schedule	MPI/CPO Layout View			Help	- Cuctom
ative Modes <u>C</u> onfigurati	ion <u>A</u> CG				
			SIMB	UILDER 🔍 –	
	ting system selection				01
	management d configuration				Ok
	path configuration	,			
	Aanager parameter definition				
Data 5	De seudin a				
Data P	Recording 😕				
Data F	Recording				
	Command				
	Command				
	Command	Priority	Hard/soft real time	Schedule policy	Stack dimensi
Tread configura	Command tion Assigned core				
Thread n.1	Command Ition Assigned core	Į		Schedule policy	<u>]</u> 1024
Thread	Command tion Assigned core				
Thread n.1	Command Ition Assigned core	h h	 A hard ↓ soft A hard ↓ soft 	FIFO -	jĭ1024 jĭ1024
Thread n.1 Thread n.1 Thread n.4 Thread n.5	Command Ition Assigned core	Į	 A hard ↓ soft A hard ↓ soft 	FIFO -	<u>]</u> 1024
Thread n.1 Thread n.1	Command Ition Assigned core	h h	 A hard ↓ soft A hard ↓ soft 	FIFO -	jĭ1024 jĭ1024
Thread n.1 Thread n.1 Thread n.4 Thread n.5	Command tion Assigned core	ji ji ji	 hard v soft 	FIFO	j1024 j1024 j1024 j1024 j1024
Thread n.1 Thread n.1 Thread n.4 Thread n.5 Thread n.6	Assigned core	Ĭ1 Ĭ1 Ĭ1	 hard v soft hard v soft hard v soft hard v soft 	FIFO)1024)1024]1024]1024
Thread n.1 Thread n.1 Thread n.4 Thread n.5 Thread n.6	Command tion Assigned core	ji ji ji	 hard v soft 	FIFO	Ĭ1024 Ĭ1024 Ĭ1024 Ĭ1024
Thread n.1 Thread n.1 Thread n.4 Thread n.5 Thread n.6	Command tion Assigned core	ji ji ji	 hard v soft 	FIFO	j1024 j1024 j1024 j1024 j1024
Thread n.1 Thread n.1 Thread n.4 Thread n.5 Thread n.6	Command tion Assigned core	ji ji ji	 hard v soft 	FIFO	Ĭ1024 Ĭ1024 Ĭ1024 Ĭ1024

You can assign to each thread a core.

🥺 Core management	
Thread and core management of the PC platform for Rapid Control Prototyping (RCF	') :
J default PC platform core management	
📧 custom PC platform core management: Number of core of the PC: 4	
Ok ?	Cancel

You can configure the threads:


- the assigned core, (in case of 'custom core management')
- the priority,
- the hard real time execution capability,
- (hard or soft),
- the schedule policy, (FIFO or Round Robin),
- the stack dimension.

excellence and passion in automatic control design The scheduling in the Rapid Control Prototyping phase

The scheduling window and the Scheduling constraints

The control functions are listed thread by thread.

 All the Control functions belonging to a same thread must have the same period,

 two Control functions belonging to a same thread must not be overlapped,

Each asynchronous
 Processor Input
 has its specific thread.

EICASLAB supports you and prevents you to make scheduling errors.

excellence and passion in automatic control design

he Professional Software Suite for Automatic Control Design and Forecasting

